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L E T E R  TO THE EDITOR 

Continual dynamics of defects in thermal convection 
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t Department of Physics, University of Illinois at Urbana-Champaign, 1 1  10 W Green Street, 
Urbana, IL61801, USA 
$ Department of Physics, Kyushu University, Fukuoka 812, Japan 

Received 2 December 1985 

Abstnct. Defect-phase dynamics is incorporated to obtain a coupled set of equations of 
motion for many topological defects (edge-type dislocations) in a Rayleigh-BCnard roll 
structure. An illustrative application of the theory is presented. 

Rayleigh-B6nard instability provides a canonical example of a transition driven by a 
spatially homogeneous forcing in non-equilibrium systems: a spatially uniform con- 
ducting state becomes unstable at the threshold to a convective state with spatially 
periodic roll structure. In the idealised laterally infinite system, the overall position 
of the rolls and their orientation may be arbitrary. Therefore, the dynamics driven by 
spatial inhomogeneities above onset naturally involves the slowly varying variable, i.e. 
the phase variable (Pomeau and Manneville 1979), describing the position and orienta- 
tion of the local roll structure. At the same time, the motion of topological defects, 
such as dislocations, disclinations and grain boundaries, is a prominent feature in the 
actual large-aspect-ratio system and seems to be playing an important role in the 
pattern evolution (Heutmaker et a1 1985, Ahlers et al 1985, Pocheau et a1 1985 and 
references therein). A method, the so-called defect-phase dynamics, to describe the 
combined dynamics of slow deformations of roll pattern and an isolated defect (or a 
small number thereof) in this pattern has recently been proposed and developed by 
us (Brand and Kawasaki 1984, Kawasaki 1984a, b, Shiwa and Kawasaki 1986). In this 
letter, this method is presented further to deal with the situation where a great number 
of defectst are present, where we also incorporate the method of Zippelius et al(1980). 

We assume that there exists the phase variable, #( r ,  t ) ,  which is a slowly varying 
function of the horizontal coordinates, r =  (x, y ) ,  and time, t. Consider a set of N 
dislocations at a discrete set of points {R‘”’}, v = 1,2 , .  . . , N, with ‘charge’ K ( ” ) .  The 
variable 4 is multivalued in the presence of defects 

where the integration is over a contour C‘”’ encircling the vth defect, and V = (ax, ay)  
throughout the letter. 

In order to construct dynamic equations in the presence of moving dislocations, 
we first define a dislocation charge density, 

a ( r ) = 2 v C  K ( ” ) S ( ~ - R ( ~ ) ) .  

t Here we consider only the edge-type dislocations. 

Y 
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Hence, 

93 = i *  (V x Q) Q = V +  
due to equation ( l ) ,  f being the unit vector along the vertical z direction. Because 
dislocations can be created and/or destroyed only in pairs of opposite charge (sign) 
or at boundaries, we have a continuity equation 

at.% = -V * J 

with a dislocation current, J 

J = 2 r C  K ( " ) R ~ ~ ) S ( ~ - R ( " ) )  
U 

where a dot denotes the time derivative. It then follows that 

a,Q- J x i= -VE. 

Here E ( r )  is a single-valued function of position and is to be identified from the 
knowledge of phase dynamics in the absence of defects when J = O  (Zippelius et a1 
1980, Kawasaki 1984a). Thus, when the phase dynamic equation takes the form 

at+ = -V i 

it gives the identification - = -v . 
To model the dislocation motion producing the current density J, we consider a 

collection of N dislocations moving under a Peach-Koehler-type force (Kawasaki 
1984a), X ~ a ) ( R ( u ) ,  t ) :  

@U)( t )  = 5'") . Xj""R"')+ r l ( Y ) ( f ) .  (2) 

Here, the superscript a distinguishes the sign of charge (a = *) of the vth dislocation 
and a fluctuating noise source q is assumed to be Gaussian and white: 

t ) p (  t ' ) )  = 2kBT5'"'S,,S( t - t ' )  

5'") being the defect mobility tensor, T the temperature and kB the Boltzmann constant, 
Now we may define the macroscopic dislocation charge density, b(r ,  t ) = ( % ) ,  as 

the average of 93 over the microscopic random force 7, and it can be written as the 
difference of number densities of the dislocations, I-(*)( r, t ) ,  with opposite charges 

b( r, t )  = 2r[I-(+)( r, t )  -I+)( r, t ) ] .  

The defect dynamics (2) gives the Fokker-Planck-type equation obeyed by P"), a = i, 
which is of the form 

atr(a) = -v . j ( a ) + p ( a )  

j c U ) (  r, t )  = -A(") - [V - (k ,T) - 'X{") (  r, t)]r(")( r, t ) .  (3 )  
Here A(")= k,TJ'"' is a diffusion tensor of defects (the Einstein relation) and the 
second term on the right-hand side of ( 3 )  represents the drift of defects due to the 
local force exerted upon them; P C u )  is the production rate of a-type dislocations upon 
which conservation of b imposes the constraint 

p(+) = pc-1 
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Symmetry properties 

xi+'= -x(-) I x I 

e(+) = e(-)  6 A(*) = A(-) E A 

then express j 5 ( J )  = 274 j(+) - j ( - ) )  as a function of b:  

j = 2 n p ~ c *  &-A Vb 

where we have introduced the total dislocation density pD 

pD( r, t )  = r(+)( r, t )  + r(-)( r, t ) .  

Once supplemented with an equation of motion for pD, the set of equations 

a,b+V . j = O  

a,Q= j x i + V ( V  - i )  

(4) 

and (4) constitutes a closed system of equations for macroscopic hydrodynamics in 
the presence of defects. In the following we illustrate its use by restricting ourselves 
to the simplest possible case. 

We shall take up a canonical phase equation of Cross and Newel1 (1984): 

~(Q)a t4  = -V [QB(Q)I (6) 

where T and B are known functions of Q. Equation ( 6 )  can be cast into a potential 
form when linearised in V i ( r )  Q ( r )  - q ( r ) ,  where q is the local wavevector of the 
underlying periodic structure which may vary slowly in space, to yield 

i = D ( q )  v i .  

D ( q )  = T ( 4 ) [ m ? ) 4 4 +  D,(q)(l- G ) I  
Dll(q) = -d[qB(q)l/dq7(q) 

x, = 2 m t  x i 

a,v& = - h 2 p D i x  4. ( D  - v i  x 2). 

Here the phase diffusion tensor D is obtained as 

i=  q/hI 

D,(q)  = - N q ) / r ( q ) .  

Then, the local force is given by (Kawasaki 1984b) 

If we take the long-wavelength limit of (9, we find that 

Let us now assume that the defect motion is so slow that pD can be taken to be 
conserved, and also we assume that defects are uniformly distributed over the sample. 
Then we may set pD( r, t )  = constant. Furthermore, we put 4 = if' so that 5 = [&t + JLj$? 
Consequently, we obtain 

atv26  = -4r2pD( Dlia + 511 olai) 6 
i This situation can be easily realised by using the thermal printing technique of Chen and Whitehead 
(1968). Altematively, one may use a wedged sample (Prost et a1 1984). 
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which yields the eigenfrequency of the mode with wavevector k ( E  = kJk, etc): 

o = -i4.rr2p,(l,~llLf+ lll~,L:) 4.rr2pD >> k2. (7)+ 

This defect (phase) relaxation mode exhibits a ‘critical slowing down’ near either 
zigzag instability (when k l l j )  or Eckhaus instability (kll;). Of course, when there 
exists no defect, pD = 0, we recover the phase diffusion mode (Pomeau and Manneville 
1979, Wesfreid and Croquette 1980, Croquette and Schosseler 1982), 

w = -i( Dll k: + D, k; ) .  

It might be worth pointing out a close analogy of the dispersion of (7) to that of a 
relaxation mode of free dislocations above the dislocation unbinding transition in 
two-dimensional melting (Zippelius er a1 1980). 

The generalisation of (7) to a more complicated configuration of dislocations would 
be very difficult: nothing has been assumed about the way dislocations are created 
and annihilated; moreover, for more general cases, the local nature of roll axis, q( r), 
cannot be neglected. Since the proposed set of coupled equations is able to treat such 
general features, we hope that efforts along this line will clarify the intriguing behaviour 
of defects in thermoconvective structures. 

One of the authors (YS) is grateful to Dr T Ohta for useful comments. The work is 
supported, in part, by the National Science Foundation under Grant no MRL DMR-83- 
16981. 
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t The quasistatic approximation we used for the dislocation motion is justified for IwI- Iu<< p,”’ where U 

is the average dislocation velocity, provided the creation of dislocations occurs on a time scale of comparable 
magnitude to one of annihilation, pO1/* /u .  Replacing U by the climb velocity of an isolated dislocation, 
weestimateit as U - ( T ~ / ~ % / ~ ~ ) D : / *  (SiggiaandZippelius 1981, Shiwaand Kawasaki 1986), 1 0 1  -4.n2p,[,,D, 
with D, = ( & / T ~ )  ( S q / q o )  (see, e.g., Cross 1983). Here to and T~ are coherence length and characteristic 
time of the convective layer without defects, and 6q = q - qo, qo being the critical wavenumber at the 
threshold. Then the above condition is rewritten as (q0/4a2ri,)(sq/q0)L/2<< p:’, which is expected to be 
well borne out near the convective threshold. 


